

Préparation mathématico-sportive pour la classe de seconde (corrigé)

J-3

Exercice 1:

a)
$$A = 15 - 4 \times 12$$
 $B = 5 \times 6 - (7 - 17)$
 $= 15 - 48$ $= 30 - (-10)$
 $= -33$ $= 30 + 10$
 $= 40$

$$C = 2 + \frac{5}{8}$$

$$= \frac{2}{1} + \frac{5}{8}$$

$$= \frac{2 \times 8}{1 \times 8} + \frac{5}{8}$$

$$= \frac{16}{8} + \frac{5}{8}$$

$$= \frac{21}{8}$$

$$D = \frac{5}{3} - \frac{9}{4}$$

$$= \frac{5 \times 4}{3 \times 4} - \frac{9 \times 3}{4 \times 3}$$

$$= \frac{20}{12} - \frac{27}{12}$$

$$= \frac{20 - 27}{12}$$

$$= -\frac{7}{12}$$

Les priorités de calculs :

- 1) les parenthèses
- 2) les multiplications et divisions
- 3) les additions et soustractions

Pour ajouter ou soustraire 2 fractions :

- On doit les réduire au même dénominateur
- On ajoute ou on soustrait les numérateurs en gardant le dénominateur commun

Il ne faut pas oublier, si nécessaire, de simplifier au maximum la fraction finale.

b) Je calcule E = 2x + 4 pour x = -5: $E = 2 \times (-5) + 4$ = -10 + 4

= -6

Pour calculer une expression pour une valeur donnée, on remplace la lettre par cette valeur (en n'oubliant pas de faire apparaitre les signes opératoires sous-entendus)

Je calcule
$$F = 5x^2 - 3$$
 pour $x = -1$: $F = 5 \times (-1)^2 - 3$
= $5 \times 1 - 3$
= $5 - 3$
= 2

Penser à placer les parenthèses« autour » de -1

Exercice 2:

a) Réduction:

$$G = -3x - 5x$$

$$= -8x$$

$$= -8x$$

$$= x^{2}$$

$$= x$$

b) Suppression de parenthèses précédées d'un signe + ou - :

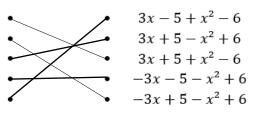
$$(3x + 5) + (x2 - 6)$$

$$(-3x + 5) - (x2 - 6)$$

$$(3x + 5) - (x2 - 6)$$

$$-(3x + 5) - (x2 - 6)$$

$$(3x - 5) + (x2 - 6)$$



Si une parenthèse est précédée du signe +, on peut supprimer les parenthèses sans rien changer.

Si une parenthèse est précédée du signe -, on peut supprimer les parenthèses à condition de changer tous les signes des termes de la parenthèse.

b) Développement et réduction:

$$M = 6 \times (x - 5)$$
$$= 6 \times x - 6 \times 5$$
$$= 6x - 30$$

$$O = (x + 7)(x + 8)$$

$$= x \times x + x \times 8 + 7 \times x + 7 \times 8$$

$$= x^{2} + 8x + 7x + 56$$

$$= x^{2} + 15x + 56$$

$$N = -4x(2x - 6)$$
= -4x \times 2x - (-4x) \times 6
= -8x^2 + 24x

$$P = (x + 7)(x + 8)$$

$$= x \times x + x \times 8 + 7 \times x + 7 \times 8$$

$$= x^{2} + 8x + 7x + 56$$

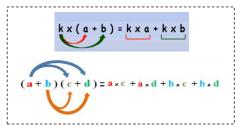
$$= x^{2} + 15x + 56$$

$$P = (3x - 2)(x - 4)$$

$$= 3x \times x + 3x \times (-4) - 2 \times x - 2 \times (-4)$$

$$= 3x^{2} - 12x - 2x + 8$$

$$= 3x^{2} - 14x + 8$$



c) Factorisation:

$$Q = 8x + 8y$$

$$= 8 \times x + 8 \times y$$

$$= 8 \times (x + y)$$

$$R = 5x^{2} - 16x$$

$$= 5 \times x \times x - 16 \times x$$

$$= x \times (5 \times x - 16)$$

$$= x(5x - 16)$$

$$T = 6 - 15y$$

$$= 3 \times 2 - 3 \times 5 \times y$$

$$= 3 \times (2 - 5 \times y)$$

$$= 3(2 - 5y)$$

e) Equations:

$$3x = 7$$

$$\frac{3x}{3} = \frac{7}{3}$$

$$x = \frac{7}{3}$$

La solution de l'équation est $\frac{7}{3}$ (La solution exacte ne peut s'écrire que sous forme fractionnaire -on parle de nombre rationnel-, on peut seulement donner une valeur approchée sous forme décimale)

$$12 + 5x = 6$$

$$12 + 5x - 12 = 6 - 12$$

$$5x = -6$$

$$\frac{5x}{5} = \frac{-6}{5}$$

$$x = -1,2$$

La solution est -1.2

$$2x + 8 = 5x + 2$$

$$2x + 8 - 5x = 5x + 2 - 5x$$

$$-3x + 8 = 2$$

$$-3x + 8 - 8 = 2 - 8$$

$$-3x = -6$$

$$\frac{-3x}{-3} = \frac{-6}{-3}$$

$$x = 2$$

La solution est 2

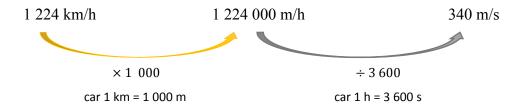
Etapes de résolution des équations du 1er degré

- On développe et on réduit si nécessaire les 2 membres de l'égalité
- On regroupe les inconnues du même côté de l'égalité
- On supprime les additions ou les soustractions
- On supprime les multiplications et les divisions

Exercice 3:	×	10	170 + 1 700 = 1 870		Produit en croix		
Distance parcourue par le son dans l'air (en mètre)	170	1 700	1 870	170 × 3 = 510	$ \frac{3600 \times 170}{0,5} \\ = 1224000 \\ (= 1224 km) $		
Temps pour parcourir cette distance (en seconde)	0,5	0,5 × 10 = 5	0,5 + 5 = 5,5	1,5	3 600 (= 1 heure)		
×3							

En utilisant la dernière colonne du tableau on peut donc dire que la vitesse du son est de 1 224 km/h.

Pour convertir en m/s:



La vitesse du son est donc de 340 m/s.

(remarque : pour trouver la vitesse en m/s, on pouvait également multiplier par 2 les données de départ : 170 m en 0.5 seconde donc $2 \times 170 = 340$ m en $2 \times 0.5 = 1s$)

Exercice 1:

a)
$$A = (14-12) \times 8 - 4 \times 9$$

= $2 \times 8 - 4 \times 9$
= $16 - 36$
= -20

$$B = (2 \times 15) \div (8 - 12) \times 5$$

$$= 30 \div (8 - 12) \times 5$$

$$= 30 \div (-4) \times 5$$

$$= -7.5 \times 5$$

$$= -37.5$$

Attention aux PRIORITES des opérations ...

$$C = \frac{11}{8} - \frac{7}{6} + \frac{3}{4}$$

$$= \frac{11 \times 3}{8 \times 3} - \frac{7 \times 4}{6 \times 4} + \frac{3 \times 6}{4 \times 6}$$

$$= \frac{33}{24} - \frac{28}{24} + \frac{18}{24}$$

$$= \frac{33 - 28 + 18}{24}$$

$$= \frac{23}{24}$$

Dénominateur commun : On cherche un multiple commun (souvent le plus petit) aux trois dénominateurs : 8 ; 6 et 4.

$$D = \frac{7}{10} - \frac{2}{5} \times \frac{15}{7}$$

$$= \frac{7}{10} - \frac{2 \times 15}{5 \times 7}$$

$$= \frac{7}{10} - \frac{2 \times 3 \times 5}{5 \times 7}$$

$$= \frac{7}{10} - \frac{6}{7}$$

$$= \frac{7 \times 7}{10 \times 7} - \frac{6 \times 10}{7 \times 10}$$

$$= \frac{49}{70} - \frac{60}{70}$$

$$= \frac{49 - 60}{70}$$

$$= \frac{-11}{70}$$

Pour multiplier 2 fractions:

- On multiplie les numérateurs entre eux (en simplifiant si possible avant d'effectuer la multiplication)
- On multiplie les dénominateurs entre eux

b)
$$E = (3x - 7)(-8x + 3)$$
 pour $x = -4$
 $= (3 \times (-4) - 7)(-8 \times (-4) + 3)$
 $= (-12 - 7)(32 + 3)$
 $= (-19) \times 35$
 $= -665$

Exercice 2:

a)
$$F = (-4x)^2$$
 $G = -6x \times (-3x)$ $H = (3x)^2$ Le produit de 2 nombres $= 3x \times 3x$ négatifs est un nombre positif $= 16x^2$ $J = -9 \times (-3x)$ $K = -4 \times 3x + 2x \times 5x + 7 - 4x$ $= -14x$ $= 27x$ $= 10x^2 - 16x + 7$

On réduit d'abord les produits puis les sommes.

b) Développement simple et double

$$L = 7 - 6x (x + 9)$$

$$= 7 - 6x \times x - 6x \times 9$$

$$= 7 - 6x^{2} - 54x$$

$$M = 7(x-4) - 3(x+4)$$

$$= 7 \times x + 7 \times (-4) - 3 \times x - 3 \times 4$$

$$= 7x - 28 - 3x - 12$$

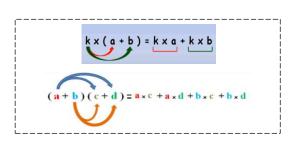
$$= 4x - 40$$

$$N = (-4x + 3)(6x - 9)$$

$$= -4x \times 6x - 4x \times (-9) + 3 \times 6x + 3 \times (-9)$$

$$= -24x^{2} + 36x + 18x - 27$$

$$= -24x^{2} + 54x - 27$$



c) Factorisation:

Factorisation avec un facteur commun:

$$k \times a + k \times b = k(a+b)$$

Factorisation avec une identité remarquable :

$$a^2 - b^2 = (a-b)(a+b)$$

d) Equations:

$$-5x + 9 = -2x + 8$$

$$-5x + 9 + 2x = -2x + 8 + 2x$$

$$-3x + 9 = 8$$

$$-3x + 9 - 9 = 8 - 9$$

$$-3x = -1$$

$$\frac{-3x}{-3} = \frac{-1}{-3}$$

$$x = \frac{1}{3}$$

$$x^{2} = 144$$

$$x = \sqrt{144} \text{ et } x = -\sqrt{144} \text{$$

La solution est $\frac{1}{3}$

$$x^2 = 144$$

C'est-à-dire

$$x = 12$$
 et $x = -12$

Les deux solutions sont 12 et -12

$$2x^2 - 9 = 63$$

$$2x^2 - 9 + 9 = 63 + 9$$

$$2x^2 = 72$$

$$\frac{2x^2}{2} = \frac{72}{2}$$

$$x^2 = 36$$

$$x = \sqrt{36} \text{ et } x = -\sqrt{36}$$

C'est-à-dire

$$x = 6$$
 et $x = -6$

Les deux solutions sont 6 et -6

Les solutions des équations du type $x^2 = a$ sont :

• Si a > 0 : 2 solutions $x = \sqrt{a}$ et $x = -\sqrt{a}$

• Si a = 0: 1 solution x = 0

• Si a < 0: il n'y a pas de solutions

e) Equations produit nul:

$$(x-9)(-2x+7)=0$$

Si un produit est nul alors l'un des facteurs au

moins est nul

$$\begin{array}{r}
 x - 9 &= 0 \\
 x - 9 + 9 &= 0 + 9 \\
 x &= 9
 \end{array}$$

$$\begin{array}{r}
 -2x + 7 &= 0 \\
 -2x + 7 &= 0 - 7 \\
 -2x &= -7 \\
 \hline
 -2x &= -7 \\
 \hline
 -2x &= -7 \\
 \hline
 -2x &= 3,5
 \end{array}$$

Les deux solutions sont 9 et 3,5

$$5x(3x-12)=0$$

Si un produit est nul alors l'un des facteurs au

moins est nul

$$5x = 0$$

$$\frac{3x}{5} = \frac{0}{5}$$

$$x = 0$$

$$3x - 12 = 0$$

$$3x - 12 + 12 = 0 + 12$$

$$3x = 12$$

$$\frac{3x}{3} = \frac{12}{3}$$

$$x = 4$$

Les deux solutions sont 0 et 4

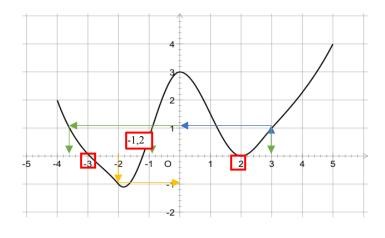
Exercice 3:

- 1. L'image du nombre 3 par la fonction f est
- 2. f(-2) = -1
- 3. Les antécédents du nombre 0 par la fonction f sont :

−3, −1,2 et 2

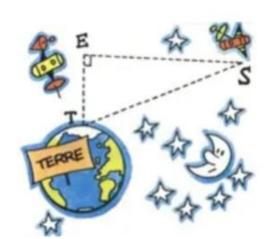
4. L'équation f(x) = 1 admet 4 solutions :

environ
$$-3.6$$
; -0.9 ; 1.2 et 3



Exercice 4:

La vitesse du signal radio est : 300 000 km/s (en 1s, le signal parcourt 300 000 km)



Le signal radio met $\frac{1}{60}$ de seconde de S à T donc la distance entre S et T est : $\frac{1}{60} \times 300\ 000 = 5\ 000\ km$

De même la distance entre E et T est : $\frac{1}{100} \times 300000 = 3000 \, km$

Le triangle EST est rectangle en E

D'après le théorème de Pythagore : $ST^2 = ES^2 + ET^2$

$$5\,000^2 = ES^2 + 3\,000^2$$

$$25\ 000\ 000 = ES^2 + 9\ 000\ 000$$

$$ES^2 = 25\,000\,000 - 9\,000\,000$$

$$ES^2 = 16\,000\,000$$

$$ES = \sqrt{16\ 000\ 000}$$

$$ES = 4000$$

La distance entre les 2 satellites est donc de 4 000 km.

J-1

Exercice 1:

a)
$$A = \frac{(-21)+7\times3}{(-13)+17\times(-4)}$$
$$= \frac{-21+21}{-13-68}$$
$$= \frac{0}{-81}$$
$$= 0$$

b)
$$B = 2x^2 - 5x + 18$$

pour $x = -3$ pour $x = 5$
 $B = 2 \times (-3)^2 - 5 \times (-3) + 18$ $= 2 \times 9 - 5 \times (-3) + 18$ $= 2 \times 25 - 5 \times 5 + 18$
 $= 18 - 5 \times (-3) + 18$ $= 50 - 5 \times 5 + 18$
 $= 18 + 15 + 18$ $= 50 - 25 + 18$
 $= 51$ $= 43$

Exercice 2:

a) Développement et réduction :

$$C = -11x^{2} + 6 - 8x + 7x^{2} - 6x - 4$$

$$= -11x^{2} + 7x^{2} - 8x - 6x + 6 - 4$$

$$= -4x^{2} - 14x + 2$$

$$D = (x - 1)(3x + 7) - 4(3x - 7)$$

$$= x \times 3x + x \times 7 - 1 \times 3x - 1 \times 7 - 4 \times 3x - 4 \times (-7)$$

$$= 3x^{2} + 7x - 3x - 7 - 12x + 28$$

$$= 3x^{2} - 8x + 21$$

$$E = 2 + 3x^{2} + (-4x^{2} + x) - (-2x + 8x) - (6x - 9)$$

$$E = 2 + 3x^{2} + (-4x^{2} + x) - (-2x + 8x) - (6x - 9)$$

$$= 2 + 3x^{2} - 4x^{2} + x + 2x - 8x - 6x + 9$$

$$= -x^{2} - 11x + 11$$

b) Factorisation

$$F = (x + 1)^{2} + (x + 1)(5x + 6)$$

$$= (x + 1) \times (x + 1) + (x + 1) \times (5x + 6)$$

$$= (x + 1) \times [(x + 1) + (5x + 6)]$$

$$= (x + 1) \times [x + 1 + 5x + 6]$$

$$= (x + 1)(6x + 7)$$

$$G = (x + 1)(5 - x) + (x + 1)(3 + 5x)$$

$$= (x + 1) \times (5 - x) + (x + 1) \times (3 + 5x)$$

$$= (x + 1) \times [(5 - x) + (3 + 5x)]$$

$$= (x + 1) \times [5 - x + 3 + 5x]$$

$$= (x + 1)(8 + 4x)$$

c) Equations:

$$2(4x-5) = 4 + x$$

$$2 \times 4x + 2 \times (-5) = 4 + x$$

$$8x - 10 = 4 + x$$

$$8x - 10 - x = 4 + x - x$$

$$7x - 10 = 4$$

$$7x - 10 + 10 = 4 + 10$$

$$7x = 14$$

$$\frac{7x}{7} = \frac{14}{7}$$

$$x = 2$$

La solution est 2

$$x^{2}-9 = 55$$

$$x^{2}-9+9 = 55+9$$

$$x^{2} = 64$$

$$x = \sqrt{64} \text{ et } x = -\sqrt{64}$$

$$C'\text{est-à-dire}$$

$$x = 8 \text{ et } x = -8$$

Les deux solutions sont

$$8 \text{ et} - 8$$

$$\frac{2}{5} = \frac{x}{4}$$
Produit en croix:
$$Si \quad \frac{a}{b} = \frac{c}{d} \quad \text{alors} \quad a \times d = b \times c$$

$$2 \times 4 = 5 \times x$$

$$8 = 5x$$

$$8 = 5x$$

$$x = 1,3$$

$$x = 1,3$$
La solution est 1,3
$$\frac{5}{6} = \frac{x - 2}{7}$$

$$5 \times 7 = 6 \times (x - 2)$$

$$35 = 6 \times x + 6 \times (-2)$$

$$35 = 6x - 12$$

$$35 + 12 = 6x - 12 + 12$$

$$47 = 6x$$

$$x = \frac{47}{6}$$
La solution est $\frac{47}{6}$

Remarque : il y d'autres méthodes permettant d'aboutir à la solution pour ces 2 dernières équations.

d) Programme de calcul:

• Choisir un nombre	• 6	• -8	• x
• Elever au carré	• $6^2 = 36$	$\bullet (-8)^2 = 64$	$\bullet x^2$
• Soustraire 9	• $36 - 9 = 27$	• $64 - 9 = 55$	• $x^2 - 9$

- 2. Donc l'expression littérale associée au programme de calcul est $x^2 9$
- 3. Pour obtenir 27, on doit résoudre l'équation : $x^2-9=27$ $x^2-9+9=27+9$ $x^2=36$ $x=\sqrt{36} \text{ et } x=-\sqrt{36} \text{ C'est-à-dire} \qquad x=6 \text{ et } x=-6$

Les deux solutions sont 6 et – 6

Remarque : on peut également « remonter » le programme de calcul c'est-à-dire inverser les étapes du programme ainsi que les opérations : on ajoute 9 (27+9=36) puis on prend la racine carrée.

Exercice 3: Fonction $g: x \to 3x^2 - 2$

a) Image de -5 par la fonction g :
$$g(-5) = 3 \times (-5)^2 - 2$$

= $3 \times 25 - 2$
= $75 - 2$

L'image de -5 par la fonction g est 73

b) Le nombre 2 est-il un antécédent du nombre 7 ? Autrement dit le nombre 7 est-il l'image du nombre 2 ?

= 73

$$g(2) = 3 \times 2^{2} - 2$$

= $3 \times 4 - 2$
= 10
 $\neq 7$

Donc le nombre 2 n'est pas un antécédent du nombre 7

c) Déterminer le(s) antécédent(s) de 1 par la fonction g revient à résoudre l'équation $3x^2 - 2 = 1$

$$3x^{2}-2 = 1$$

$$3x^{2}-2+2 = 1+2$$

$$3x^{2} = 3$$

$$\frac{3x^{2}}{3} = \frac{3}{3}$$

$$x^{2} = 1$$

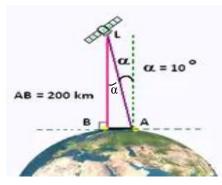
$$x = \sqrt{1} \text{ et } x = -\sqrt{1} \quad \text{C'est-à-dire } x = 1 \quad \text{et } x = -1$$

Donc les antécédents de 1 par la fonction g sont 1 et -1

d)
$$g(\sqrt{2}) = 3 \times \sqrt{2}^2 - 2$$

= $3 \times 2 - 2$
= $6 - 2$
= 4

Exercice 4:



Le triangle ABL est rectangle en B

D'après la trigonométrie :
$$\tan \widehat{BLA} = \frac{\cot \acute{e} \ oppos\acute{e} \ \grave{a} \ \widehat{BLA}}{\cot \acute{e} \ adjacent} \ \grave{a} \ \widehat{BLA} = \frac{AB}{BL}$$

$$\tan 10^\circ = \frac{200}{BL}$$

$$\mathrm{BL} = \frac{200}{\tan 10^\circ}$$

$$\approx 1134$$

Le satellite est à environ 1 134 km de l'observateur se trouvant au point B.